Magnified observation of the minerals contained within ore and rocks is required in a wide range of fields, including plant construction in the oil industry, material research in the construction industry, and research and development at universities. In many cases, it is difficult to identify substances contained within minerals using a loupe or the naked-eye, so petrographic microscopes are used.
This section describes the basics of petrographic microscopes, explains typical mineral observation items, and introduces examples of polarized light observation of minerals using our 4K digital microscope.

Polarized Light Observation for High-Resolution Imaging of Minerals

Different Mineral Observation Methods for Different Purposes

Loupes or stereoscopic microscopes are used to observe microscopic mineral aggregates and crystals at low magnifications (10x - 100x). On the other hand, when observing mineral types and structures within ore and rocks a magnification of 50x or higher is required, and the specimen is prepared on a glass slide and observed under a petrographic microscope.

What Is a Petrographic Microscope?

A petrographic microscope is a type of optical microscope that uses polarized light, which transmits light vibrating in a fixed direction, to enable observation using different vibration directions of light depending on the material. A petrographic microscope uses a lens with installed Nicol prisms (polarizing plates or polarizing filters; explained later) and lighting.

General petrographic microscopes use a polarizing plate called the polarizing Nicol prism (polarizer) to change the irradiated light into polarized light. The status of the polarized light that passed through the specimen is then detected with the analyzing Nicol prism (analyzer), another polarizing plate between the objective lens and the eyepiece. This status is converted into contrast between light and dark or between different colors on the specimen, visualizing the optical characteristics of the target.

This principle can be used to identify microscopic minerals contained in rocks and to selectively capture and observe rock structures according to the optical properties of the mineral under polarized light conditions. When observing ore and rocks, the target is cut to a thickness of approximately 0.03 mm (0.0012") and is prepared as a specimen on a glass slide that is placed on the stage, ensuring the light passes through the specimen.

Because petrographic microscopes can magnify microscopic targets to observe their optical properties, these devices are used not only with minerals but in the research of various items such as glass, plastics (films, etc.), polymers, fibers, polymeric materials, and the medicine made from polymeric materials.

What Are (Parallel and Crossed) Nicol Prisms?

Normal light vibrates in various directions. This light can be changed to vibrate in a single direction (polarized) by passing it through a polarizing filter (polarizing plate) called a Nicol prism. Changing the direction in which light is polarized by rotating the specimen side in relation to the Nicol prism changes the vibration direction of the captured light, allowing for selective detection of a specific target and its characteristics.
The two types of typical polarized light observation methods using Nicol prisms are shown below.

Parallel Nicol prisms
Parallel Nicol prisms
Crossed Nicol prisms
Crossed Nicol prisms
A
Light
B
Nicol prisms
C
Vibration directions

Parallel Nicol prisms

This refers to the observation of a specimen prepared on a glass slide with the Nicol prisms arranged in the same direction, an arrangement that is also called open Nicol. As shown in the figure on the left, the only light that passes is that vibrating in the same direction as the Nicol prisms.

Crossed Nicol prisms

This is also called orthogonal Nicol. It refers to the observation of a specimen prepared on a glass slide and placed between two Nicol prisms arranged so the directions in which they polarize light are orthogonal. As shown in the figure on the right, the light that vibrates in directions at a right angle and parallel to the two Nicol prisms does not pass. Although overlapping these two Nicol prisms results in a black image, light can pass through the crossed Nicol prisms and be observed depending on the vibration direction of the light from the specimen placed between the prisms.

Items in Polarized Light Observation of Minerals

This section explains typical observation items to show how petrographic microscopes are used to observe minerals.

Mineral shapes

When ore or rocks are observed with the naked eye, it is only possible to determine their general shape, such as column- or board-shaped. On the other hand, if you cut a thin slice of ore, prepare this specimen on a glass slide, and use a petrographic microscope to observe it with parallel Nicol prisms, you can magnify the shape of the mineral in the cross section and observe it selectively.

Cleavage

Multiple linear cracks (stripes) that are parallel or that cross each other at fixed angles are known as cleavage and can be seen with polarized light observation with parallel Nicol prisms.

Refractive index

This index, which indicates the degree to which light refracts, can be examined when light passes through a mineral. In observation with a petrographic microscope, the refractive index can be examined by checking whether parallel Nicol prisms cause the cracks (stripes) on and the contour of the mineral to appear as clear black marks.

Pleochroism

When a mineral whose color can be checked changes color if the specimen is rotated under polarized light with parallel Nicol prisms, the phenomenon is referred to as pleochroism. With color changes attributable to pleochroism, the same color can be seen twice with each specimen rotation of 360°. For example, during polarized light observation of hornblende, rotating the specimen by 90° causes light brown and dark green-brown to alternately appear, indicating pleochroism.

Zonal structures

Zonal structures are structures in which the composition of a single crystal differs on its exterior (which grows last) and interior (which grows first) due to its growth. These structures are commonly seen in minerals such as plagioclase and pyroxene contained in igneous rock. Crossed Nicol prisms are used in the polarized light observation of zonal structures.

Interference color

Each time the specimen is rotated 360° during polarized light observation with crossed Nicol prisms, the image switches between bright and dark four times. The position where the image appears brightest is called the diagonal position. The color of the mineral that can be observed at the diagonal position is the interference color.

Extinction angle

Each time the specimen is rotated during polarized light observation with crossed Nicol prisms, multiple mineral crystals appear bright or dark. For minerals that appear dark four times during a rotation of 360°, the darkest position is the extinction position. The angle between this position and the vertical direction of the field of view is the extinction angle.

Positive and negative extension

With a lambda filter (sensitive color test plate/full-wave plate) inserted between crossed Nicol prisms, rotating the specimen causes the cracks (stripes) and thin edges of the crystal to appear yellow and blue. If the Z’ direction of the lambda filter and the extension direction of the mineral roughly match when the rotation is stopped with the target at a position that makes it appear blue, the extension is positive. On the other hand, if the extension direction matches the X’ direction, the extension is negative.

Crystal twinning

Crystal twinning refers to systematic changes in the atom arrangement direction at the lattice plane in a mineral crystal. With crossed Nicol prisms, non-extinct parts can be viewed as straight light and dark stripes in the crystal of a mineral that has undergone crystal twinning. Rotating the specimen inverts the light and dark parts.

Exsolution texture

Exsolution texture refers to a structure in which a solid mineral remains in this form but separates (undergoes exsolution) into two or more types of minerals under a gentle temperature decrease. Polarized light observation of these textures is possible with crossed Nicol prisms.

4K Digital Microscope Application Example in Polarized Light Observation of Minerals

In polarized light observation of minerals, it is necessary to clearly perceive changes in the viewing method due to the angle. However, the following problems are present in mineral observation: it is very difficult to determine conditions for the transmitted illumination; proficiency, experience, and a large amount of time are required; and evaluations vary from one observer to another.
KEYENCE’s ultra-high accuracy VHX Series 4K Digital Microscope uses a high-performance optical system, a 4K CMOS image sensor, and a proprietary observation system that provides access to diverse functions with simple operations.
Furthermore, corresponding to observation with parallel or crossed Nicol prisms, high-resolution 4K images can be acquired with simple operations even during polarized light observation of minerals, allowing for efficient and fast mineral identification and structure observation.
This section introduces an example of polarized light observation of minerals using the VHX Series.

Polarized light observation of minerals

The VHX Series 4K Digital Microscope’s proprietary observation system provides fully motorized stage movement including focusing and rotation, allowing for accurate and efficient polarized light observation.
In addition to this system, which provides high functionality with simple operations, a lineup of lenses is available to meet the needs of observers, supporting observation with parallel or crossed Nicol prisms.
A dual-objective zoom lens (VH-ZST) can be used to achieve a wide magnification range (20x to 2000x) without changing the lens. The wide variety of illumination options provided by lens-controlled mixed lighting and various optical adapters enables the optimal environment for mineral identification and structure observation. This high-performance optical system and lighting can be used to capture images with a 4K CMOS image sensor, allowing for observation of minerals with 4K images whose accuracy is far higher than anything possible until now.

Polarized light observation of minerals (parallel Nicol prisms/crossed Nicol prisms) using the VHX Series 4K digital microscope
Transmitted polarizing illumination + parallel Nicol prisms (lens used: VH-ZST 50x)
Transmitted polarizing illumination + parallel Nicol prisms (lens used: VH-ZST 50x)
Transmitted polarizing illumination + crossed Nicol prisms (lens used: VH-ZST 50x)
Transmitted polarizing illumination + crossed Nicol prisms (lens used: VH-ZST 50x)

A 4K Digital Microscope That Enables Observation and Analysis of Various Objects Including Minerals

The VHX Series 4K digital microscope provides high performance and functionality not only as a petrographic microscope capable of high-accuracy 4K image quality but as a stereoscopic microscope, metallurgical microscope, and measuring microscope as well, covering a wide range of observation modes including brightfield, darkfield, polarized light, and differential interference contrast. The observation and analysis of a wide range of targets can be controlled automatically, strongly supporting research work.

Although advanced observation with 4K images was not possible conventionally, the VHX Series is equipped with many functions that make this a reality. The Multi-lighting function optimizes the determination of lighting conditions at the press of a button, and the depth composition function makes it possible to capture fully focused images of the entire field of view, even when this field includes a three-dimensional target at high magnification.
This product also allows for advanced analyses such as highly accurate sub-micrometer level 2D and 3D measurements, acquisition and profile measurement of 3D images, and automatic area measurement/count with intuitive operations.
Additionally, Excel can be installed directly on the VHX Series to automatically create reports using templates. This one device is all you need to seamlessly and efficiently carry out all your observation and analysis work.

For additional info or inquiries about the VHX Series, click the buttons below.